Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.icmbio.gov.br/handle/cecav/1859
Título : Interactive Machine Learning Solutions for Acoustic Monitoring of Animal Wildlife in Biosphere Reserves
Autor : Gouvêa, Thiago S.
Kath, Hannes
Troshani, Ilira
Luers, Bengt
Serafini, Patricia Pereira
Campos, Ivan B.
Afonso, Andre S.
Leandro, Sergio M. F. M.
Swanepoel, Lourens
Theron, Nicholas
Swemmer, Anthony M.
Sonntag, Daniel
Palabras clave : CEM@VE;Monitoramento acústico
Fecha de publicación : 2023
Resumen : Biodiversity loss is taking place at accelerated rates globally, and a business-as-usual trajectory will lead to missing internationally established conservation goals. Biosphere reserves are sites designed to be of global signifcance in terms of both the biodiversity within them and their potential for sustainable development, and are therefore ideal places for the development of local solutions to global challenges. While the protection of biodiversity is a primary goal of biosphere reserves, adequate information on the state and trends of biodiversity remains a critical gap for adaptive management in biosphere reserves. Passive acous tic monitoring (PAM) is an increasingly popular method for continued, reproducible, scalable, and cost-effective monitoring of animal wildlife. PAM adoption is on the rise, but its data management and analysis requirements pose a barrier for adoption for most agencies tasked with monitoring biodiversity. As an interdisciplinary team of machine learn ing scientists and ecologists experienced with PAM and working at biosphere reserves in marine and terrestrial ecosystems on three different continents, we report on the co-development of interactive machine learning tools for semi-automated assessment of animal wildlife.
metadata.dc.type: Artigo
metadata.dc.totalpage: 9
metadata.dc.localofdeposit: https://www.ijcai.org/proceedings/2023/0711.pdf
URI : https://repositorio.icmbio.gov.br/handle/cecav/1859
Aparece en las colecciones: Livros e Publicações

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Gouvea_etal2023.pdf4.7 MBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.